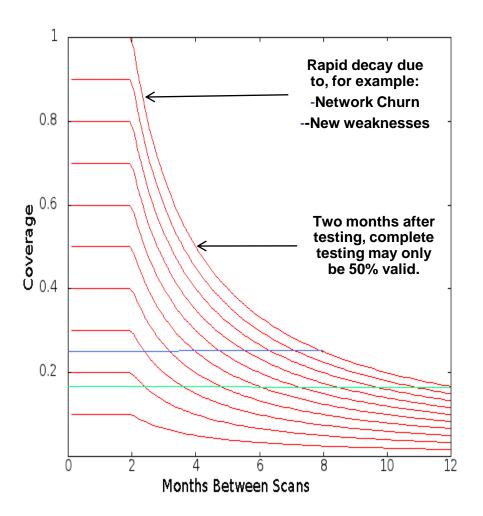
Effectiveness Measures for Continuous Monitoring

Completeness and Timeliness?

How do we make it affordable for things that require manual testing?

U.S. Department of State November 2011


Completeness/Timeliness Tradeoff: Part 1

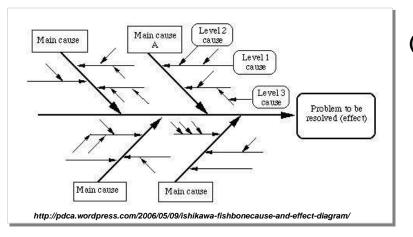
- FISMA 1.0 is based on the assumption that security is founded on the completeness of the security program
 - It treats security controls as links in a chain, and if any one link breaks, the chain fails.
- > FISMA 1.0 places little emphasis on timeliness.
 - OMB A-130 states checking controls every three years is adequate.
 - Adversaries are scanning our networks for weaknesses continually, and at automated speeds.
 - A strong defense requires a rapid response.

Completeness/Timeliness Tradeoff: Part 2

- MIT Lincoln Labs is conducting a mathematical modeling study of the tradeoff between complete testing and timeliness. Preliminary results show that:
 - Complete tests, when conducted frequently, are much better than incomplete tests
 - The benefits of "Complete" tests decay rapidly over time under any reasonable assumptions.
 - In this example, after one year,
 the complete test (once a year) is only as effective as a 17% complete test every 2 months.
 (See green line) Results depend on detailed assumptions.

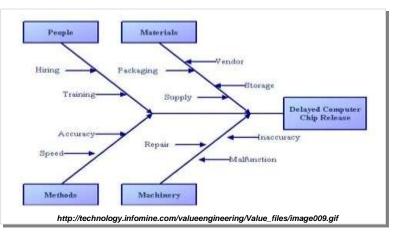
Economic Analysis: What to Test

- State conducted a notional economic analysis of the cost/benefit of testing and remediation considering the following parameters:
 - Cost of testing and remediation
 - Cost of not remediating (High value)
 - Probability of failure of the control over time.
- The study concluded that there are two kinds of things to monitor continuously:
 - Things that are *very cheap to monitor* (on the margin). For example, vulnerability and configuration checks.
 - Things that are *very high risk/value*. For example, whether an integrated set of controls is working to produce an essential result/outcome.


Transition imperatives:

- more "timeliness" in testing priority "things".
- -less "completeness" to pay for timeliness.

Because guidance doesn't define high priority things to test, we need a model of high priority security OUTCOMES.



How? Fishbone diagrams

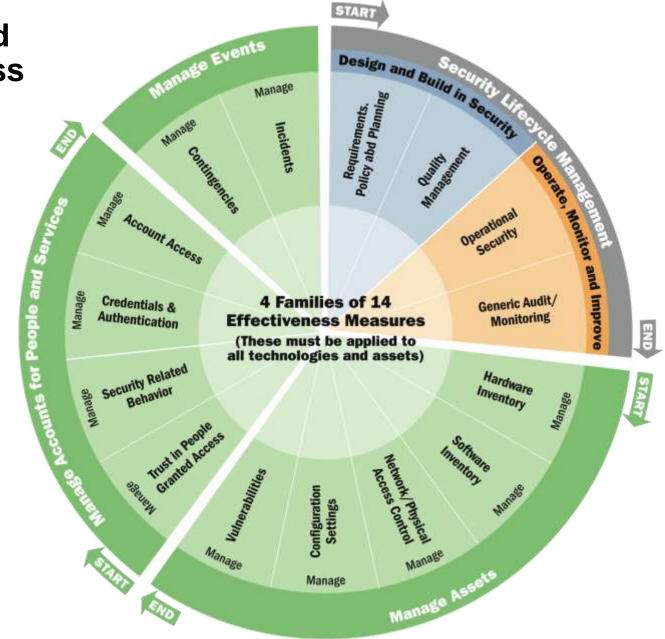
The Ishikawa diagram (also known as a Fishbone diagram) is a graphical method for finding the most likely causes for an undesired effect.

Kaoru Ishikawa, a famous Japanese consultant developed this method in the 1960s

Next Step: focus on how to define "high value outcomes"

Methodology background – Part 1

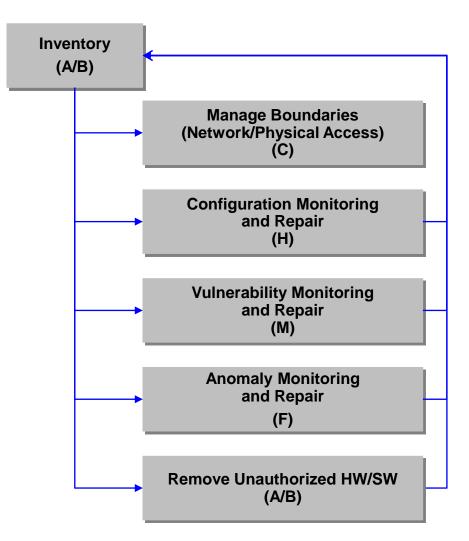
- A CMWG sub-group has developed a set of 15 Effectiveness Measures that cover all NIST 800-53 and CAG/CSC Controls
- -These were developed by starting with the detailed controls and inductively deriving the controls' purpose.
- -For each measure, a fishbone diagram was developed to indicate the main "requirements" to produce the desired effect.


Methodology background – Part 2

- A CMWG sub-group has developed a set of 15 Effectiveness Measures that cover all NIST 800-53 and CAG/CSC Controls
- After the steps in the last slide were done the 800-53 controls elements were remapped to the resulting effectiveness measures and fishbone "requirement". This mapping was then reviewed independently by two different SME firms.

Conclusion: Continuous monitoring of the 15 effectiveness measures would fully cover both 800-53 and CAG/CSC.

15 Proposed Effectiveness Measures


Plan, Engineer, & Prepare for Operations **Operate, Monitor, & Improve** Plan Prepare **Operate & Check** Improve Effectiveness Measure Track Find Requirements Definition Α Desired Α Systemic Problems Α State Design/ Test/ AQ/ 11 7 Α Α Assign Scores to Delta Infrastructure Α 8 Track 6 Α Actual Value **Proposition** 5 Policy & Planning Α 10 Fix Issues by ID Score Deviations Α Priority 2 Prep Staff Α Manage & Operate 3

This Fishbone Diagram works for EACH of the 15 Areas

The Hardware/Software Family

The Hardware/Software Family **Monitor Inventory – Step 1**

Area Attack Scenarios (adapted from 800-53 Capability Statement Capability Statement							
Area	Attack Scenarios (adapted from 800-53 and the CSC Version 3.0)	Capability Statement					
é	Attackers continually	Manage Hardware					
– Manage Hardware	scan for new, unprotected	Inventory					
	systems, including test or	Remove unauthorized					
	experimental systems,	hardware with X hours to					
	and exploit such systems	prevent attackers from					
	to gain control of them.	Gaining control of those					
A		systems.					

The Hardware/Software Family Monitor Inventory – Step 2

Area	Attack Scenarios (adapted from 800-53	Value Statement
	and the CSC Version 3.0)	
	- Attackers continually scan for	Manage Software Inventory
	vulnerable software and exploit it to	Remove unauthorized software with X
	gain control of target machines.	hours to prevent attackers from:
are	- Attackers distribute hostile content on	 Exploiting vulnerable software (for
Software	Internet-accessible (and sometimes	example, placed there innocently by
Sof	internal) websites that exploits	insiders to perform work without
ge	unpatched and improperly secured	adequately addressing security).
Manage	client software running on victim	 exploiting unpatched and improperly
Š	machines.	secured software
	- Attackers use currently infected or	 Using the software to exploit other
	compromised machines to identify and	vulnerable machines across the
	exploit other vulnerable machines	internal network.
	across an internal network.	

The Hardware/Software Family Monitor Vulnerabilities and Configurations – Step 3a

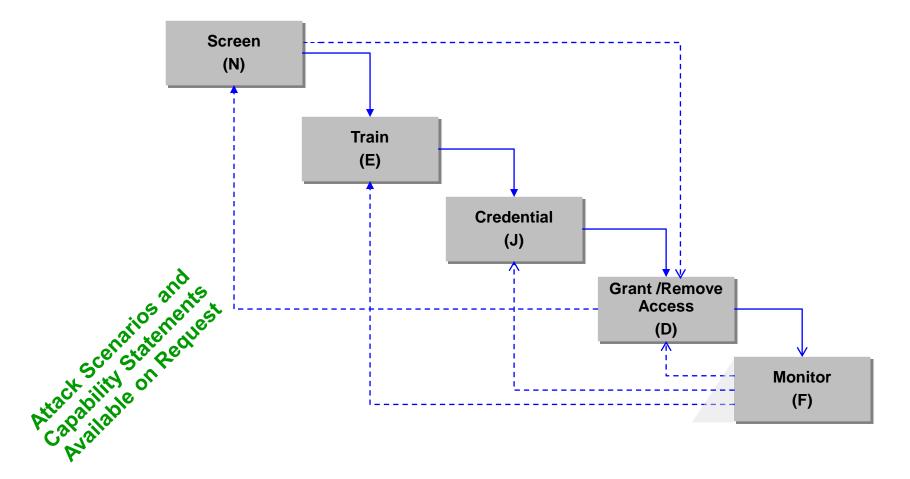
Area	Attack Scenarios (adapted from 800-53	Value Statement							
	and the CSC Version 3.0)								
I – Manage Configurations (CCEs)	 and the CSC Version 3.0) Attackers exploit weak default configurations of systems that are more geared to ease of use than security. Attackers exploit and infiltrate through network devices whose security configuration has been weakened over time by granting, for specific short-term business needs, supposedly temporary exceptions that are never removed. Attackers scan for remotely accessible services on target systems that are often unneeded for business activities, but provide an avenue of attack and compromise of the 	 Manage Configuration Settings Prevent weaknesses from weak configuration settings (including port, protocols, and services) by defining an appropriate desired operational state for these settings and maintaining it in operation, thereby preventing attackers from: Exploiting preventable configurational weaknesses. 							
Т	organization.								

The Hardware/Software Family Monitor Vulnerabilities and Configurations – Step 3b

Area	Attack Scenarios (adapted from 800-53 and the CSC Version 3.0)	Value Statement					
()	Attackers exploit new	Manage Known Vulnerabilities					
M – Manage Vulnerabilities (CVEs)	vulnerabilities on systems that	Prevent vulnerabilities (for					
	lack critical patches in	example, CVEs from the National					
	organizations that do not know	Vulnerability Database) by					
	that they are vulnerable	finding and removing such					
	because they lack continuous	vulnerabilities, thereby					
	vulnerability assessments and	preventing attackers from:					
	effective remediation.	 Exploiting preventable 					
		vulnerabilities					

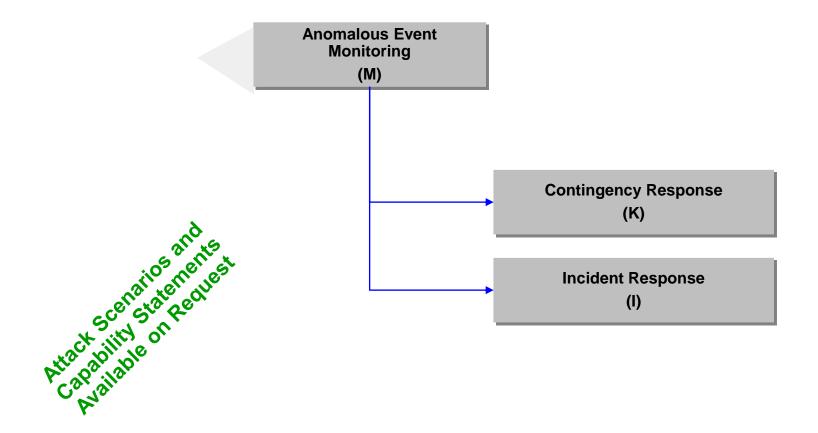
The Hardware/Software Family Monitor Boundaries – Step 4a

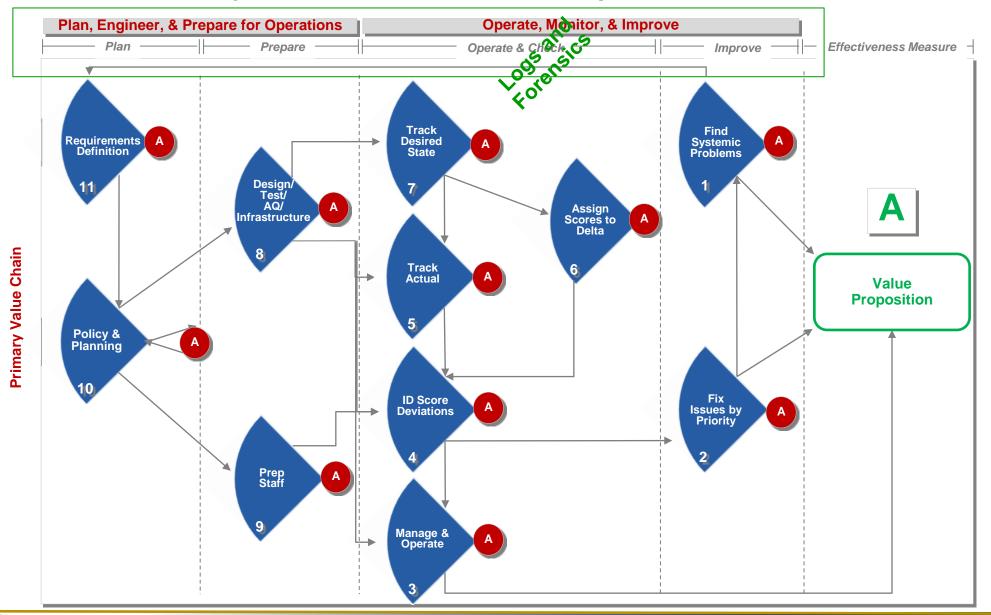
Area	Attack Scenarios (adapted from 800-	Value Statement
	53 and the CSC Version 3.0)	
	Attackers exploit boundary systems on	Manage Network Access
Ces	Internet-accessible DMZ networks (and	Prevent, remove and limit unauthorized
Acc	on internal network boundaries), and then	network connections/access
Network Access	pivot to gain deeper access on internal	to prevent attackers from:
N N	networks.	 exploiting internal and external network
Vet		boundaries and then pivoting to gain
		deeper network access and/or capture
C – Manage		network resident data in motion or at
		rest.
		Note: Boundaries include things like
		firewalls, but also encryption (as in VPNs).


The Hardware/Software Family Monitor Boundaries – Step 4b

Area	Attack Scenarios (adapted from 800-	Value Statement					
	53 and the CSC Version 3.0)						
Vccess	Attackers exploit physical	Manage of Physical Access					
	boundaries to gain access to	Prevent, remove and limit					
cal A	facilities, networks, etc. and	unauthorized physical access, and					
– Manage Physical Access	then pivot to gain deeper access	to prevent attackers from:					
	to, or cause harm to those	 exploiting that access and then 					
	resources and/or data.	pivoting to gain deeper access					
		to, or cause harm to those					
U		resources and/or data.					

Manage Accounts (for people and services)


Interactions of Effectiveness Measures



Manage Events

Interactions of Effectiveness Measures

The Lifecycle Outcomes fit Over the Operational Fishbones

Audit Log Management is Key to All Other Areas

Audit Logs and Forensics apply to all operational families

- -Hardware/Software Behavior
- -Account Behavior
- Events (Contingencies and Incidents)
- Integration of this log data across the enterprise is essential at later stages of maturity.

Coverage Model

	Technologies and Assets											
4 Families of 15 Effectiveness Measures (These must be applied to all technologies and assets)	Networks	Applications	Data	People	Wireless	Cloud	Maintenance	Media	Physical	Environmenta	Malware	Etc
Security Lifecycle Management: Design and Build in Security Requirement, Policy and Planning (L) Quality Management (G1) Operate, Monitor and Improve Operational Security (G2) Generic Audit/Monitoring (F)								chnol lolog	201 094.	ostic	,	
Manage Hardware and Software Assets Manage Hardware Inventory (A) Manage Software Inventory (B) Manage Network /Physical Access Control (C) Manage Configuration Settings (H) Manage Vulnerabilities (M)					oph	acre	tech	10109				
<u>Manage Accounts for People and Services</u> Manage Trust in People Granted Access (N) Manage Security Related Behavior (E) Manage Credentials & Authentication (J) Manage Account Access (D)			1835	ITES	shou	lo						
<u>Manage Events</u> Manage Contingencies (I) Manage Incidents (K)		4	leas									

Conclusions:

- Improved security strategy should support a risk-based tradeoff between completeness and timeliness of testing/remediation.
- Recent modeling by MIT shows that even incomplete/timely testing and remediation can be as effective as complete/untimely testing.
- We should test things that are
 - relatively cheap to test and
 - things that are of high security risk/value.
- Testing the 15 proposed effectiveness measures offers:
 - the best available set of high value security outcomes for "complete" monitoring
 - of 800-53 "controls" using event driven testing
 - at a reasonable cost .

